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In a magnetically confined plasma with a stochastic magnetic field, the dependence of the perpendicular
viscosity on the magnetic fluctuation amplitude is measured for the first time. With a controlled, ∼ tenfold
variation in the fluctuation amplitude, the viscosity increases ∼100-fold, exhibiting the same fluctuation-
amplitude-squared dependence as the predicted rate of stochastic field line diffusion. The absolute value
of the viscosity is well predicted by a model based on momentum transport in a stochastic field, the first
in-depth test of this model.
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Viscosity characterizes the rate of momentum transport
within a fluid and plays an important role in fluid stability.
The viscosity can be expressed in terms of its dynamic or
absolute value but also in terms of its kinematic value,
normalizing the dynamic viscosity to the mass density. For
a two-fluid plasma consisting of electrons and ions,
momentum is carried primarily by the ions, and viscosity
affects the rate of ion momentum transport. If the plasma
is embedded in a magnetic field, the viscosity is aniso-
tropic. The viscosity in the direction parallel to the field
is the same as that for an unmagnetized plasma, but
perpendicular to the field the viscosity and momentum
transport are reduced.
The classical lower bound on perpendicular or cross-

field viscosity in a magnetized plasma was derived by
Braginskii [1] for the case of viscosity dominated by ion-
ion collisions. The Braginskii viscosity has been assumed
to apply in many astrophysical and laboratory plasmas,
e.g., the flaring solar corona [2], clusters of galaxies [3],
and the tokamak fusion plasma [4]. But measurements
confirming the relevance of the Braginskii viscosity have
been rare. One exception was in a few-eV screw-pinch
plasma column where the ion viscosity agreed with the
Braginskii value to within a factor of 2 [5].
Measurements of the perpendicular viscosity have also

been made in the reversed-field pinch (RFP) plasma [6,7], a
high-temperature toroidal magnetic fusion configuration
that can exist in a steady fashion with a stochastic magnetic
topology, where field lines wander chaotically, over much
of the plasma volume. The measured viscosity was as much
as 100 times the Braginskii value. Stochastic magnetic
topologies can also occur in other configurations such as
the tokamak, stellarator, and spheromak, e.g., Refs. [8–10].
Stochasticity in the tokamak, for example, occurs locally in
the plasma edge when applying an external magnetic
perturbation [11] and globally during disruptions [12],

wherein magnetohydrodynamic (MHD) instabilities lead
to the premature termination of the discharge [13].
In astrophysical plasmas, viscous momentum transport

in stochastic magnetic fields occurs, for example, in
accretion disks [14,15]. Another astrophysical phenome-
non where viscosity and stochastic magnetic fields may
play a role is when a so-called cold front propagates into a
magnetized medium [16,17].
Nonlinear viscoresistive MHD computation is used for

both astrophysical and laboratory plasmas to model sce-
narios with magnetic stochasticity, e.g., Refs. [14,18–21].
However, while the resistivity is sometimes provided by
measurements, the viscosity must be assumed.
A model was proposed by Finn, Guzdar, and Chernikov

[22] to describe the transport of momentum and particles in
a stochastic field. Motivated to help explain the physics of
the transition to the high-confinement mode in tokamaks,
momentum in the model is transported along stochastic
field lines by sound wave propagation. The kinematic
viscosity is assumed to be proportional to the square of
the magnetic fluctuation amplitude, utilizing the quasilinear
stochastic magnetic diffusion coefficient derived by
Rosenbluth et al. [23]. While the magnetic diffusion
coefficient has been tested in the context of electron heat
transport in both astrophysical [24,25] and laboratory
[26,27] plasmas, there has been no in-depth test of the
Finn model for momentum transport. In their paper, Finn,
Guzdar, and Chernikov suggest that their model could be
tested in a tokamak in which internal magnetic fluctuations
are varied via an external magnetic perturbation.
In this Letter, we adopt an alternative approach, compar-

ing measured and modeled viscosities in stochastic
RFP plasmas, wherein the amplitude of the underlying
magnetic fluctuations is varied both through magnetic self-
organization and through external inductive control. The
fluctuations arise due to tearing modes (TMs) driven
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unstable by the gradient in the plasma current. The viscosity
ismeasured experimentally via perturbations to themomen-
tum profile: acceleration with an insertable biased probe [6]
and deceleration with a resonant magnetic perturbation
(RMP) [28,29]. We thereby show that (i) with a ∼ tenfold
variation in fluctuation amplitude, the viscosity varies
∼100-fold, exhibiting the same fluctuation-amplitude-
squared dependence as the predicted rate of stochastic field
line diffusion, and (ii) the absolute value of the viscosity is
well predicted by the Finn model.
Experimental data were gathered in the Madison

Symmetric Torus (MST) [30] RFP. This toroidal device
has major and minor radii of R ¼ 1.5 m and a ¼ 0.52 m.
Deuterium (D) plasmas were Ohmically heated with a
toroidal plasma current ranging from 50 to 400 kA. The
line-averaged electron density was varied from 0.3 to
1.5 × 1019 m−3. The TM amplitudes and phase velocities
were measured by magnetic pick-up coils at the plasma
boundary. The dominant TMs have poloidal mode number
m ¼ 1with different toroidalmode numbersn. Thesemodes
corotate with the plasma [6,31], resembling the large TM
amplitude case in the tokamak [32]. Each mode is resonant
where the safety factor q≡ ðrBϕÞ=ðRBθÞ ¼ m=n, whereBϕ

and Bθ are the equilibrium toroidal and poloidal fields. At
each resonant surface, a magnetic island forms, and island
overlap leads to stochasticity. The degree of overlap
increases with the amplitudes of neighboring TMs. The
amplitude of each TM at its resonant surface is calculated
from the radial eigenfunction [29].
Three different magnetic equilibria were employed in this

work, characterized by the edge safety factor: qðaÞ ¼ 0,
−0.07, and a time-varying equilibriumwith qðaÞmin ¼ −0.2.
In the qðaÞ ¼ 0 plasmas, the fluctuation level decreases
through self-organization with an increasing plasma current,
and the qðaÞ ¼ −0.07 plasmas exhibit an additional sponta-
neous reduction in the fluctuation level [33]. In theqðaÞmin ¼
−0.2 case, the fluctuations are still further reduced by
the application of inductive modification of the current
profile [34,35].
The classical width of a magnetic island wmn ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rmnjbr;mnj=ðnBθjq0mnjÞ
p

, where br;mn is the radial com-
ponent of the tearing magnetic fluctuation, q0mn is a radial
derivative, and all quantities are defined at the resonant
surface, minor radius rmn. The degree of overlap between
two islands, (m, n) and (m0, n0), can be quantified by the
Chirikov parameter s [36]. Island overlap (s > 1) causes
the field lines to become entangled, and the radial excursion
Δr over a distance L along a field line can be described by a
stochastic process. Averaging over several steps, the
diffusion coefficient for a magnetic field line is

Dmag ¼ hΔr2i=2L: ð1Þ

In a collisionless plasma, transport can occur directly
along a single field line over the whole stochastic region. In

the MST plasmas described here, the collisionless regime
[22,37] is a reasonable approximation, since the range of
the ion mean free path (1–30 m) is at a minimum similar to
the autocorrelation length [38] Lc ≈ 1 m [39].
The diffusion of electrons in a stochastic magnetic field

was described by Rechester and Rosenbluth (RR) [37],
who posited that the heat diffusivity in the collisionless
limit, χe ¼ veDmagR, where ve is the electron thermal
velocity and

DmagR ¼ Lc

X

m;n

�

br;mn

B

�

2

ð2Þ

is the magnetic diffusion coefficient in the quasilinear
approximation [23]. Here,B is defined at rmn. The TMs that
overlap are included in the sum, which we shall henceforth
denote simply as ðb=BÞ2. The RR model assumes s ≫ 1.
Finn, Guzdar, and Chernikov [22] assumed a similar

model for the transport of momentum, but the transport
occurs due to sound wave propagation. Accordingly, the
kinematic viscosity in a stochastic field is

ν⊥;st ¼ csDmagR: ð3Þ

We calculate the sound speed cs using

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγeZkBTe þ γikBTiÞ=M
p

: ð4Þ

The electron temperature Te was measured with a Thomson
scattering diagnostic [40]. The ion temperature Ti was
inferred from earlier spectroscopic measurements in similar
MST plasmas [41]. We assume a pure D plasma with
isothermal electrons (γe ¼ 1) and one degree of freedom for
the ions (γi ¼ 3). Because of impurities, the effective
charge and mass are moderately higher than for a pure
D plasma, but the impact is muted given the dependence of
Z and M in the sound speed.
To calculate DmagR [Eq. (2)], we require the values of Lc

andb=B. The autocorrelation lengthwas calculated using the
model in Ref. [38], which had agreement with numerical
calculations for the RFP [42]. We estimate Lc ¼ π=Δkk ≈
1.2� 0.4 m, for all scenarios. The parallel spectral width
Δkk ¼ ðΔm=aÞðBθ=BÞ þ ðΔn=RÞðBϕ=BÞ, where poloidal
mode spectrumwidthΔm ¼ 0.5 had the best agreementwith
magnetic probe measurements, and the toroidal width is
Δn ≈ 4 [39]. In the calculation of b=B, we used the time-
averaged rms amplitude of the three innermost TMs whose
islands overlap. The inclusion of additional TMs, which are
of lower amplitude, has only a small effect on DmagR. We
calculated the 1σ error in ν⊥;st by propagating uncertainties
through Eqs. (2)–(4). We note that neither the probe nor the
RMP affect the measured mode spectrum, and therefore
DmagR is also unaffected. This is in contrast to the tokamak,
where RMPs can destabilize additional TMs [43], and biased
probes either suppress or destabilize the TMs [44].
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Experimentally, we determined the viscosity by model-
ing the radial transport of the perturbed momentum. The
transport was modeled by solving the toroidal component
of the momentum equation

ρ
∂Δvϕ
∂t ¼ 1

r
∂
∂r

�

rμ⊥
∂Δvϕ
∂r

�

þ T injected; ð5Þ

where the injected torque density (T injected) is from either
the probe or the RMP, ρ is the mass density, Δvϕ is the
perturbed radial profile of the toroidal plasma flow, and
μ⊥ðrÞ is the perpendicular dynamic viscosity. The dynamic
viscosity is assumed to be spatially constant, μ⊥ ¼ ρ0ν⊥,
where the central mass density ρ0 is determined from the
measurement. The electron density profile, measured with a
multichord interferometer [45], is well approximated by
ne ¼ ne0½1 − ðr=aÞ3�. The deuteron density is assumed
equal to the electron density. The kinematic viscosity
(ν⊥) is the only free parameter in the model, and its value
is chosen to match the experimental momentum transport.
A flat viscosity profile is suggested as a good approxima-
tion by the fact that the Dmag profile is typically flat in the
core [26,46], as are the temperature and density profiles.
And the fit viscosity is most sensitive to the value in the
core [29]. Hence, the fit value represents approximately the
core average.
The plasma response to the biased probe [6] is shown in

Fig. 1, from an ensemble average of 20 shots with qðaÞ ¼ 0,
Iϕ ¼ 200 kA, and hnei ≈ 0.7 × 1019 m−3. Inserted to
r=a ≈ 0.8, the probe is biased for 10 ms to ∼0.4 kV relative
to the MST vacuum vessel, resulting in a drawn current of
∼1 kA [Fig. 1(a)] and a J ×B torque imposed on the edge
plasma. The toroidal flow in the edge [Fig. 1(b)], inferred
from the Doppler shift of the CIII impurity emission,
responds quickly to the bias and saturates. The core flow,
represented by the velocity of the innermost resonant (1,5)
TM, increases slowly throughout the bias period [Fig. 1(c)].
After the biasing, the edge once again responds more
promptly than the core.
The slowing-down timescale of the core flow, τsd, is

inversely proportional to the viscosity [6], ν⊥ ¼ d2=τsd,
where d is the radial extent over which momentum diffuses.
The best fit of the deceleration curve to the function
vϕ ¼ A expð−t=τsdÞ þ v0 has τsd ¼ 3.3 ms. This is about
1.3 times longer than that measured previously in MST
hydrogen (H) plasmas with a similar equilibrium [6].
Assuming that d and DmagR are the same with H and D,
Eq. (3) predicts the ratio of the slowing-down times to be
τsdD=τsdH ¼ csH=csD ≈ 1.3, suggesting that the difference
in τsd could be due to the difference in the plasma
sound speed.
The radial transport of momentum during bias is

depicted by the change in the velocity of TMs resonant
at different radii [Fig. 1(d)]. Initially, the CIII ions and
the TMs closest to the probe are accelerated. Later, all the

core TMs have been accelerated through the viscous
transfer of momentum.
The transport depicted in Fig. 1 was modeled with

Eq. (5). The torque density produced by the probe during
the bias is assumed to fall off as 1=r from the probe tip
to the plasma boundary. This was motivated by the fact that
the current density decreases as 1=r and that the magnetic
field changes only slightly (�5%) in this region. This
torque was adjusted such that the modeled and experi-
mental velocity profiles match at the end of the biasing
period. After biasing, ν⊥ is the only free parameter in the
model, and by matching the experimental core deceleration
curve [Fig. 1(c)] it was found that ν⊥ ¼ 15� 5 m2=s. The
uncertainty includes the change in ν⊥ when the modeled
plasma density is varied within the experimental 1σ
standard deviation. Using probe bias, we measured ν⊥ in
qðaÞ ¼ 0 plasmas at three plasma currents (Table I). The
viscosity increases from 15� 5 to 55� 12 m2=s as Iϕ
drops from 200 to 49 kA. We show below that this can be
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FIG. 1. (a) Probe bias voltage and current, (b) CIII toroidal flow
and modeled plasma flow at r=a ¼ 0.81, (c) toroidal phase
velocity of central (1,5) TM and modeled plasma flow at the (1,5)
resonant surface, (d) measured (data points) and modeled
perturbed velocity profile at three time intervals, the centers of
which are indicated by vertical lines in (a)–(c). Experimental
profiles in (d) are based on the change in rotation of the n ¼ 5–10
modes. Modeled profiles represent the change in plasma flow.
The 1σ error bars represent the change in each time window. The
phase velocities of the core modes (n ¼ 5 − 10) are used to
constrain the modeledΔvϕðrÞ, whereas the CIII velocity is shown
only as a visual test of the modeling of the edge.
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explained by the self-organized increase in b=B as Iϕ
decreases.
Complementing thebiasing technique,weutilized braking

with the RMP technique [29,47], in which an externalm ¼ 1
RMP produces an electromagnetic torque at each TM
resonant surface [48]. Injected through a cut in MST’s
conducting shell, this torque acts to reduce the phase
difference between the rotating TMs and the static RMP.
Utilization of the RMP expands the parameter space acces-
sible for this work to higher-energy-density plasmas that
would damage the inserted biased probe. And applying the
RMP and biased probe to the same set of plasma conditions
provides a valuable cross-check on the measured viscosity.
In Fig. 2 are waveforms from a single discharge with an

RMP. The plasma parameters [qðaÞ ¼ 0, Iϕ ¼ 200 kA, and
hnei ≈ 1.0 × 1019 m−3] were similar to those for the data in
Fig. 1, but with a higher density. With the application of the
RMP, the core rotation velocity, represented here by the
velocity of the two innermost resonantm ¼ 1TMs, gradually
slows and finally drops to zero. TheTMvelocities and plasma
flow were modeled by solving the momentum equation
[Eq. (5)], as described in Ref. [29]. Similar to the biased-
probe modeling, the only free parameter here is the viscosity,
and it is estimated bymatching the experimental deceleration

of the TMs. Figures 2(b) and 2(c) show, for example, the
model fit to the experimental velocity of the two largest TMs.
Averaging over ten similar discharges like that in Fig. 2,

the model-required viscosity is ν⊥ ¼ 21� 6 m2=s, where
the uncertainty is the 1σ standard deviation including
both the uncertainty in the model input and the shot-to-shot
deviation in the viscosity. This value, within the uncertainty,
is consistent with the value measured using the biased probe
in similar plasma conditions. In the same fashion, the RMP
was used to measure the viscosity in five additional plasma
conditions, eachwith a different b=B. The results are listed in
Table I, showing that ν⊥ generally increases with b=B. The
table also shows that, at Iϕ ≈ 125 kA, the values of ν⊥
measured with the RMP and probe are identical.
All of the probe and RMP measurements of viscosity

are compared in Fig. 3 with the models of Rosenbluth et al.
and Finn, Guzdar, and Chernikov. The dependence of the
viscosity on (b=B) is shown in Fig. 3(a), where the
measured viscosity is divided by the plasma sound speed

TABLE I. Experimental and model viscosities for different plasma conditions. The Chirikov parameter (s) was calculated for two
innermost TMs included in DmagR. Errors are 1σ standard deviation.

Method qðaÞ Iϕ (kA) cs (km/s) b=B (%) s ν⊥;exp (m2=s) ν⊥;st (m2=s) ν⊥;Brag (m2=s)

Probe 0 49 90 2.3 3.5 55� 12 56� 20 3.93� 1.06
RMP 0 125 160 1.3 2.3 30� 9 30� 5 0.34� 0.11
Probe 0 124 160 1.2 2.3 30� 8 28� 10 0.40� 0.11
Probe 0 200 200 1.0 2.2 15� 5 25� 10 0.14� 0.04
RMP 0 208 190 1.0 2.2 21� 6 24� 5 0.18� 0.06
RMP 0 302 220 0.9 2.0 20� 5 24� 5 0.09� 0.02
RMP 0 396 250 0.8 1.9 17� 6 19� 5 0.05� 0.01
RMP −0.07 338 260 0.6 1.6 10� 3 13� 2 0.04� 0.00
RMP −0.2 182 210 0.2 1.2 0.6� 0.3 1.1� 0.7 0.14� 0.03
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(Table I). The best fit to the experimental data, Dmag ¼
ð1.07� 0.12Þðb=BÞ2.13�0.19, is in good agreement with the
expectation ðb=BÞ2 for the quasilinear stochastic magnetic
diffusion coefficient [Eq. (2)]. And as shown in Table I,
(b=B) spans ∼ tenfold, while the experimental viscosity
spans ∼100-fold. In Fig. 3(b), the measured viscosities are
compared directly to the predictions, ν⊥;st, of the Finn
model. Within the estimated uncertainties, shown numeri-
cally in Table I, the viscosities agree in all cases, consistent
with the magnetic fluctuations and stochasticity being
responsible for the anomalous transport of momentum.
This is also consistent with a previous estimate in stochastic
hydrogen MST plasmas [6], where a single measured
viscosity agreed reasonably well with the Finn model.
In modeling the momentum transport [Eq. (5)], the

intrinsic momentum source was not included, but this
would affect our conclusions only if the probe or RMP
changes the source. The likely source is the fluctuation-
based kinetic stress [49], and (i) neither perturbative
technique has much effect on the fluctuation amplitudes,
and (ii) the viscosity measured with the two techniques is
about the same, even though their impact, if any, on the
kinetic stress might be expected to differ.
As expected, the experimental viscosities are all larger

than the classical predictions, ν⊥;Brag ¼ 3niTi=ð10ω2
i τiÞ,

where ωi and τi are the ion Larmor frequency and collision
time, respectively [1]. It is, however, interesting that the
viscosity in the case with the lowest fluctuation amplitude
is within a factor of 4 of ν⊥;Brag (Table I), suggesting that
this case is near the limit of the domain where a stochastic
field can be assumed. This is consistent with the near-
threshold island overlap criterion (s ¼ 1.2) and the fact that
the stochastic prediction for the viscosity is nearly twice the
experimental value (Table I).
In summary, our results confirm for the first time that the

kinematic viscosity in a stochasticmagnetic topology can be
modeled by momentum propagated by sound waves along
the magnetic field lines. This work is applicable to tokamak,
stellarator, RFP, and other laboratory plasmas, along with a
variety of astrophysical plasmas, in which magnetic sto-
chasticity plays an important role. Viscoresistive MHD
modeling of these plasmas can now be better constrained
and should therefore be more realistic, contributing further
to the predictive capability of the science of high-temper-
ature, magnetically confined plasmas.
Data shown in this Letter can be obtained in

Supplemental Material Ref. [50].
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